

## Midterm Questions\_Spring 2022

Professor Andreas Züttel

Assistant: Yasemen Kuddusi

### Question 1 (CHAPTER 1: BASICS)

A child of a family wants his room ( $10 \times 4 \times 4 \text{ m}^3$ ) to be heated to  $25^\circ\text{C}$  from the air that is originally at  $15^\circ\text{C}$ . The room is heated by a thermal energy storage with a heating rate of  $80 \text{ kJ/h}$ , the heat loss from the room is  $2 \text{ kJ/h}$ . Estimate the time when the child's room will reach to the desired temperature? ( $c_{v,av} = 0.72 \text{ kJ/kg}^\circ\text{C}$ ,  $MW = 29 \text{ g/mol}$ )

### Question 2 (CHAPTER 1: BASICS, CHAPTER 2: ENERGY DEMAND)

How much money would you save yearly if you decrease your daily showering time from 10 minutes to 5 minutes. Volumetric flowrate of the shower is 12 liters/min. and the heating used per liter of water is 120 Btu per liter and energy cost of the heating is 0.15 CHF per kWh.

### Question 3 (CHAPTER 3: RESOURCES)

A university computer lab consisting of 15 computers is always open for users except on the weekends. In the weekdays, it is open from 08:00 A.M. until 08:00 P.M. Each computer needs 240W. (Coal:  $0.37 \text{ kg CO}_2/\text{kWh}$ , 1 tonne coal =  $30 \text{ GJ}$ )

- Calculate how much  $\text{CO}_2$  will be released from a coal power plant to keep this computer lab operating?
- Calculate coal mass consumed for this coal power plant to keep this computer lab operating?

### Question 4 (CHAPTER 4: CARNOT CYCLE-STEAM ENGINE and CHAPTER 5: PISTON ENGINE)

Calculate the work when  $2 \text{ m}^3$  of  $\text{CO}_2$  at  $120 \text{ kPa}$  and  $25^\circ\text{C}$  is compressed isothermally to  $800 \text{ kPa}$ .

### Question 5 (CHAPTER 7: NUCLEAR ENERGY and CHAPTER 3: RESOURCES)

A car consumes approximately 25 liters of gasoline per day. ( $\text{density}_{\text{gasoline}} = 0.75 \text{ kg/L}$ ). Heating value of gasoline is around  $44000 \text{ kJ/kg}$ . If this car was able to run with  $0.4 \text{ kg}$  of  $^{235}\text{U}$ , estimate the time when it would need refueling. (Complete fission energy from  $^{235}\text{U} = 6.73 \times 10^{10} \text{ kJ/kg}$ )